How Can We Help?

+91 9960703606
Mail: info@cowsoftinfotech.com cowsoftinfotech@gmail.com

Data Science

Begin your transformative journey with our comprehensive “Advanced Certification in Data Analytics.” This program ensures you become a seasoned professional by delving deeply into advanced data analytics techniques and methodologies.

The first step in our program is the “Advanced Data Analytics Certification,” designed to refine your analytical skills.

  • Elevate Your Expertise: Introducing the Advanced Certification in Data Analytics
  • Master the Art of Analysis: Advanced Data Analytics Certification
  • SAS Advanced Analytics Professional Certification
  • Advanced Certification in Data Analytics for Business
  • Advanced Analytics Certification
  • SAS Certified Advanced Analytics Professional Using SAS 9

Explore Result Oriented

They are highly trained for quickly response and provide great service to our customers. Experts are give profitability and success of our business growth & marketing. Network solutions’ to Windows and open source operating systems, as those software platforms gained networking capabilities.

100% Placement Assistance

  • Python Introduction 
  • Variables 
  • Operators 
  • Conditional Statements 
  • DataTypes: 
    • Int 
    • Float 
    • Complex 
    • String 
    • List 
    • Tuple 
    • Set and FrozenSet 
    • Dict 
    • Bool 
  • Loops in Python: 
    • For Loop 
    • While Loop 
    • Functions 
    • Python Functions 
    • Types of Arguments 
    • Recursive Function 
    • Lambda Functions 
    • Built-in Functions 
  • Module and Packages: 
    • OS (Operating System) 
    • Glob 
    • Shutil 
    • Time 
    • DateTime 
    • Regular Expressions 
    • Pytesseract
  • File Handling 
  • Exception Handling 
  • Object-Oriented Programming: 
    • Inheritance 
    • Encapsulation 
    • Polymorphism 
    • Abstraction 
  • Iterator and Generator 
  • Decorator 
  • Python Web Framework (Flask)
  • Preprocessing and Model Building 
    • Numpy 
    • Pandas 
    • Scipy 
    • Stats model 
    • Sklearn 
    • Nltk 
    • Imblearn 
    • Mlxtend 
  • ■Visualization 
    • Matplotlib 
    • Seaborn 
    • plotly(3D Ploting) 

 NumPy: (Numerical Python) 

  • Introduction to Numpy 
  • Datatypes of ndarrays 
  • Dealing with ndarrays, copies and views 
  • Arithmetic operations, 
  • Indexing , Slicing, splitting arrays 
  • Shape manipulation 
  • Stacking together different data 
  • Stats using Numpy 
  • Linear Algebric Operations 
  • Logarithmic Functions 

 Pandas: (Data Analysis) 

  • DataFrame and Series 
  • DataFrame operations 
  • Data Slicing, indexing 
  • DataFrame functions 
  • Reading the files- csv, excel 
  • Storing file in various formats 
  • Useful DataFrame functions 
  • Stats using pandas 
  • Dealing with missing data 
  • Operations over the data
  • Sorting DataFrame Using Values and index 
  • Groupy and Apply 
  • Joins in Pandas

 Machine Learning Algorithms: 

  • Supervised Machine Learning: 
    • Linear Regression 
    • Logistic Regression 
    • K-Nearest Neighbour 
    • Decision Tree 
    • Random Forest 
    • AdaBoost 
    • Support Vector Machine 
    • Naive Bayes Classifier 
    • Gradient Boost 
    • Extreme Gradient Boost 
    • Unsupervised Machine Learning: 
  • K-Means Clustering 
  • Principal Component Analysis 

 Other DS Topics: 

  • Preprocessing: 
  • Handling of Missing Values 
  • Handling of Outliers: 
    • Detection(Zscore, IQR) 
    • Handling (Imputation, Transformation) 
  • Encoding(Label Encosing, One Hot Encoding) 
  • Feature scaling(Normalization,Standardization) 
  • Binning 
  • Feature Selection: 
  • Filter Method 
  • Wrapper Method 
  • Embedded Method 
  • Hypothesis Testing: 
  • P-value 
  • Z Test 
  • T-Test 
  • ANOVA 
  • Chi-Square Test
  • Introduction to Deep Learning
  • AI Vs ML Vs DL
  • Neural Networks
  • Forward and Backward Propagation
  • Gradient descent, Stochastic gd , mini batch, Adadelta, adagrad, rmsprop
  • Activation functions sigmoid,tanh,relu,leaky relu,softmax,p-relu,softplus 
  • Adam optimizer , Sigmoid vanishing gradient problem 
  • Advantages , disadvantages and applications 
  • ANN implementation 
  • CNN implementation

 

  • Introduction of Generative AI
  • Generative AI for Text Generation
  • Generative AI for Machine Translation
  • Generative AI for Creative Content Generation
  • Advanced Topics in Generative AI with NLP
  • LLMs: Use Cases and Potentials
  • Hugging Face Hub: A Gateway to Generative AI
  • Prompt Engineering: The Art of Guiding LLMs
  • RAG: A Versatile Tool for Generative AI
  • Fine-tuning: Unveiling the Potential of LLMs
  • Project : On prompt image and caption generator
  • Project : Customised Chat bot
  • Project : Genei: An Alexa like assistant

 

 

  • Need of AWS 
  • Free tier account creation 
  • Introduction to AWS home 
  • Regions and availability zones 
  • Billing dashboard
  • Understanding EC2 
  • Creating and launching ec2 instance
  • Deployment of project on ec2
  • Introduction to all available services provided by AWS (Theory) 
  • AWS Sagemaker – Creating notebook instance 
  • Building model using inbuilt jupyter sample notebook 
  • Creating and deleting IAM role 
  • AWS S3 – Introduction 
  • Creating buckets and uploading objects into it 
  • Integrating S3 with Sagemaker 
  • Emptying and Deleting buckets